

Supported by

OF Office of Science

Modification of the Early Current Profile Evolution with High Harmonic Fast Waves

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U **SNL** Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

S. P. Gerhardt, M. Bell, J. Hosea, C. Kessel, G. Taylor, J. Menard, D. Mueller

NSTX 2010 Research Forum ASC TSG Breakout Session Dec. 2nd, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Overview

- Background:
 - NSTX typically uses substantial early NBI:
 - Provides early heating.
 - Provides momentum input.
 - Leads to substantial lost power to plasma facing surfaces.
 - Control of the early current profile evolution could be quite beneficial:
 - Enable more exotic scenarios.
 - Improve reliability of ramp-up.
- Goals of Proposed XP:
 - Develop startup techniques to rapidly close to a small outer gap.
 - Couple HHFW to these plasmas.
 - Try various phasings and power levels
 - Demonstrate variation in $q_{min/0}$ -evolution as a function of phasing and power.
- Contributes to:
 - Research Milestone (R10-2): Characterize HHFW heating, current drive, and current ramp-up in deuterium H-mode plasmas.
 - Research Milestone R(11-2): Assess the dependence of integrated plasma performance on collisionality.
 - IOS-4.1: Access conditions for hybrid scenario.
 - IOS-5.2: Maintaining ICRH coupling in expected ITER regime.
 - IOS-6.2: l_i control during current ramps.

DIII-D Experiments Showed q_{min}/q₀ Control

- Feed forward experiments to document the effect.
 - 3 & 5 have no ECH
- Later experiments showed feedback control of q_{min}/q₀.
 rtEFIT with MSE
- Useful for ensuring similar q-profiles at the start of flat-top.
- Could be used for I_i control in near-term, and q_{0/min} if MSE comes in realtime.

Figure 2. Time evolution of (*a*), (*e*) electron temperature at $\rho \approx 0.4$, (*b*), (*f*) on-axis *q*, (*c*), (*g*) minimum value of *q* and (*d*), (*h*) smoothed neutral beam power P_{inj} , smoothed gyrotron power P_{EC} and total plasma current I_p in discharges with various values of T_e . The discharges in (*a*)–(*d*) are L-mode and the discharges in (*e*)–(*h*) are H-mode. In Cases 1, 2 and 4, T_e is feedback controlled using ECH at $\rho \approx 0.4$ while Cases 3 and 5 have no ECH.

Ferron et al. Nuclear

Key for Scenario: Small Outer Gap Early in the Discharge

129169: He shot with early reversed shear. 129386: D₂ shot with good H-mode heating.

_

0.1.

٠

•

٠

Shot Plan

- Reference shot: high elongation and triangularity D₂, using Src. A.
 - I_P~800 kA and B_T~0.5 T.
 - Or low duty cycle modulation to get MSE every 50 msec?
- Go to smaller outer gap earlier in the discharge.
 - Prefer to have 5cm gap at time of 200-400 kA.
 - Ride plasma on RF limiter with no beam? Less attractive.
- Apply -14 + -18 m⁻¹ HHFW at low level (300-500kW)
 - Optimize coupling.
 - Increase power in ~300-500 kW steps.
 - Observe changes in flux-consumption and kinetic and PA profiles.
- Repeat that step with -8 m⁻¹ phasing.
- Repeat one scenario with reduced NB heating
 - Isolate role of NB heating and momentum input.
- Repeat one scenario with no HHFW to asses confinement differences.
 - Match β_N evolution with β_N control?

HHFW May Be Able to Increase the H-mode Core Temperature

 $T_{e,0}$ vs $n_{e,0}$, at the time of maximum β_N .

Scan of NB Pre-Heating Showed an Effect on q_{min} & I_i Evolution

()) NSTX